
QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

120

REACT NATIVE: A BRIEF INTRODUCTION

TO MODERN CROSS-PLATFORM MOBILE

APPLICATION DEVELOPMENT

Tamara RANISAVLJEVIĆ

Darjan KARABAŠEVIĆ

Miodrag BRZAKOVIĆ

Gabrijela POPOVIĆ

Dragiša STANUJKIĆ

Abstract: React Native is a framework for building native iOS and

Android applications using JavaScript. The React library is the key

feature. React Native has the same design as React, allowing composing

a rich mobile user interface from declarative components, but uses native

components instead of web components to render a user interface. React

Native has a powerful composition model and recommendation is to use

composition instead of inheritance to reuse code between components.

To build the content of a component, React Native provides props.

Components are in a tree-like structure and data flow through

components is unidirectional. In addition to props, components can also

have an internal state. Each of the prop and state change triggers a

complete re-render of the component. Two main Hooks enable managing

a component internal state and component lifecycle. Global state

management is provided by Redux and Context API. Context API is a

React built-in functionality to share data across the application without

having to pass through props. It is like a global value which can be

accessed anywhere through the application component tree. Redux is a

state management container used for handling all the application related

data. All changes to the data happen through reducers and all data is

maintained in a global store.

Keywords: android, component, iOS, React Native, state management

INTRODUCTION

React Native is a cross-platform framework used for the development of

native mobile applications using JavaScript and React. It is based on an idea

to allow developers to write high-quality native applications for iOS and

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

121

Android using familiar Web technologies. The beginning of this framework

dates back to January of 2015. It was created and published by Meta

Platforms, Inc. However, it did not originally support the development of

mobile applications for the Android platform, until September 2015 (Dabit,

2019). Today, in addition to iOS and Android platforms, it is possible to

develop applications utilising React Native for Windows, MacOS, Web,

multiple TV platforms and devices, with the help of third-party libraries

(Building for TV Devices; React Native for Windows + macOS).

BACKGROUND

JavaScript is a dynamic scripting language, which was developed to

support the browser with the feature of asynchronous communication and

for user interaction with the web page components. In other words, it

instructs the browser to make changes to page elements after loading a web

page. In JavaScript, data changes in memory and it is bound to a view in the

user interfaces (UI). That means when data is modified in JavaScript, which

is in memory, the data will be changed in the UI as well. In turn, when the

data changes in the user interface, more precisely in the Document Object

Model (DOM) by clicking a button or any other event, it is also updated in

memory, keeping the two in sync. In complex and large applications with

multiple views representing data in one of models and, as adding more

models and more views, this two-way data binding ends up in an infinite

event loop where one view updates a model, which in return updates a view.

That is the huge disadvantage of JavaScript and that is why it is not suitable

for creating large high-efficiency applications (Paul, Nalwaya, 2016).

 React, also known as ReactJS, is an open-source JavaScript library

originally created by Jordan Walke. It is backed and maintained by Meta

Platforms, Inc (Team). It is used as the View (V) in the Model-View-

Controller (MVC). React is designed for solving problems on the Web in a

way that allows rendering complex UI with high performance. This library

has become extremely popular since its introduction in 2013, with many

established companies taking advantage of its quick rendering,

maintainability, and declarative UI, among other things. It can be said that

React is the backbone of creating powerful single page Web applications.

The basic fundamental behind React is the concept of virtual DOM

(Aggarwal et al, 2018).

Traditional Web applications are slow because they use the DOM and

DOM manipulations are expensive. For the application to be fast and

efficient, the usage of the DOM must be as little as possible, because the

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

122

time required to modify and redraw the DOM can be extremely long. The

solution proposed by the React library is to keep a representation of the

DOM in memory, called a virtual DOM, and make all changes there (Rawat,

Mahajan, 2020). Like the actual DOM, the virtual DOM is a node tree that

lists elements and their attributes and content as objects and properties. The

virtual DOM renders subtrees of nodes based upon state changes and it can

be rendered either at client side or server side and communicate back and

forth (Aggarwal et al, 2018). Whenever a request for changing the page

content is made, the changes are reflected to the memory residing virtual

DOM first. After that a diff() algorithm compares the virtual DOM and the

browser DOM, and then the required changes only are reflected to the

browser DOM, instead of re-rendering the entire DOM. The goal is that

when making changes to memory, React applies the minimum number of

changes necessary to align the actual DOM with the virtual DOM.

Furthermore, this mechanism provides a gigantic boost to the performance

of applications. This characteristic of the virtual DOM is not only important,

but the ultimate key feature of React library (Paul, Nalwaya, 2016).

REACT NATIVE ARCHITECTURE

The cross-platform capability of React Native is possible due to its

unique architecture. Figure 1. presents several different segments of React

Native architecture.

Figure 1. React Native Architecture Scheme

Source: Matijević, 2021

The Native Module system exposes instances of native classes to

JavaScript as JavaScript objects, thereby allowing to execute arbitrary

native code from within JavaScript. In the case of iOS native modules are

written in Objective C or Swift, while in the case of Android modules are

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

123

written in Java or Kotlin. React Native renders native components by

invoking platform-specific APIs. For instance, to render UI components on

iOS, React Native uses either Objective C or Swift APIs. As for Android

mobile applications, it will be Java or Kotlin. But for writing React Native

applications, a developer would hardly ever need to write native code. In

fact, a developer doesn’t need to know Objective C or Kotlin to create the

React Native apps (Gaba, Ramachandran, 2019; Native Modules Intro).

The JavaScript Virtual Machine, also known as JavaScript Bundle, is

the engine that runs all JavaScript code written in React Native apps. On

both iOS and Android simulators and devices, React Native uses

JavaScriptCore. JavaScriptCore is a framework that allows JavaScript code

to be run on mobile devices, for instance. On iOS devices, this framework

is directly provided by the OS. Android devices don’t have JavaScriptCore,

so React Native bundles it along with the application itself. This slightly

increases the size of the application on Android devices. When the

application runs on the device, JavaScriptCore is used to run the JavaScript

code. However, in case of debugging the application, the JavaScript code

will run inside Chrome. Chrome uses the V8 engine and uses WebSockets

to communicate with the source code. It is important to note that the V8

engine and JavaScriptCore are different environments, and errors can occur

only when the debugger is connected, but not when the application is

running normally on a mobile device (Gaba, Ramachandran, 2019).

The core element of React Native architecture is the Bridge. React

Native Bridge is written in C++/Java. The bridge transforms the JavaScript

code into source, native code and vice versa. It translates JavaScript into

platform-specific components. Simply put, the Bridge gets JavaScript call,

then it leverages Objective C, Swift, Kotlin or Java APIs, which allows the

original display of the application (Gaba, Ramachandran, 2019).

It is important to emphasise that React Native runs all layouts on

separate threads. React Native uses three threads - JavaScript thread,

Shadow thread and the Main thread.

The JavaScript thread is where the logic runs and will decide what must

be rendered on the screen. This is where the application JavaScript code is

executed and where API calls are made. The Shadow thread is a background

thread which executes operations from the JavaScript thread. This is where

the layout of the app is calculated and passed to the application’s interface

The Main thread is also known as the UI thread since only this thread can

make changes to the UI. The Bridge system uses the React library to display

the application on the device. The process does not affect the user

experience because these asynchronous calls take place separately from the

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

124

Main thread. Therefore, the Main thread is the one React Native application

runs on and is used for native Android or iOS user interface rendering

(Gaba, Ramachandran, 2019; Matijević, 2021).

The JavaScript thread and the Main thread do not communicate directly

but work by sending asynchronous JSON messages. The exchange of

asynchronous JSON messages is very efficient. In other words, these two

threads depend on the Bridge. JavaScript thread also uses Bridge to transfer

data to Shadow thread. The JavaScript thread achieves this by serialising

data in JSON format and sending it as a string. This also happens when

transferring data from the Shadow to the Main Thread (Matijević, 2021).

REACT NATIVE RE - ARCHITECTURE

Since 2018, Meta Platforms, Inc has been working on a new React

Native architecture. It will become open source during this year. The new

architecture design differs from the current one in many ways. As shown in

Figure 2, it consists of the new Native Turbo Module system and the new

Renderer Fabric (Corti, 2022).

Figure 2. React Native Re-Architecture Scheme
Source: Matijević, 2021

The absence of the Bridge is noticeable in the new architecture. Given

the problems caused by the Bridge, such as the dependence of the Main and

JavaScript threads on the Bridge, asynchronous operation that does not

guarantee data transfer and significant delays in data transfer, it is not

surprising that the Bridge has been replaced by a new component called

JavaScript Interface (JSI). The main goal of this component is to enable

JavaScript and Native parties to be able to communicate without an

additional step in the form of a Bridge (Matijević, 2021).

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

125

The novelty brought by JSI is the fact that the JavaScript package no

longer has to depend on JavaScriptCore. This means that in the future, the

JavaScriptCore engine could be replaced by another JavaScript engine, such

as the Chrome Engine V8. This further means that application development

and debugging mode could be in the same environment. Moreover, by using

JSI, JavaScript will be able to keep references to C++ Host objects and call

methods on them, which in turn will allow JavaScript and Native

components to recognize each other and communicate with each other

directly (Matijević, 2021).

Turbo Modules are basically like current Native Modules, but are

implemented to behave differently. The best feature of Turbo Modules is

that they are lazy loaded, which means that JavaScript code will load each

module only when needed and have a direct reference to it. This can

significantly improve start-up times for applications with many source

modules (Khoroshulia, 2020).

Fabric is a new React Native rendering system, a conceptual evolution

of the outdated rendering system. The basic principles are the integration of

higher rendering logic in C++, improving interoperability with host

platforms and unlocking new features for React Native. One of the new

features is that Fabric allows you to create a shadow tree directly in C++

with UI Manager, which improves the response of the user interface by

eliminating the need to skip strings. With the new implementation of multi-

platform display systems, each platform benefits from performance

improvements that are inspired by the limitations of a single platform

(Fabric; Matijević, 2021).

Further, instead of communicating with the JavaScript site via Bridge,

Fabric uses JSI to expose the user interface functions of the JavaScript site,

resulting in direct communication on both sides. Since React Native is

single-threaded, which means that when one component is rendered, the

others have to wait in line, this control will allow JavaScript to have priority

rows for the user interface. This means that it can prioritise time-sensitive

user interface tasks and execute them synchronously over all others

(Khoroshulia, 2020; Matijević, 2021).

The features of Native modules, that require synchronous data access,

cannot be fully exploited in the current React Native architecture. That’s

why another useful tool has been introduced into the new React Native

architecture, and that is Codegen. The Codegen tool will automate

compatibility between JavaScript threads and source threads and ensure that

they are synchronised. In addition, Codegen will define the interface

elements used by Turbo Modules and Fabric. All of this is expected to

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

126

eliminate the need to duplicate the code and allow data to be sent without

uncertainty (Matijević, 2021).

REACT FUNDAMENTALS

React Native brings the power of React to mobile development. It is

built on top of React, utilises the React library as dependency and it uses the

same declarative approach to constructing user interfaces as React for the

Web (React Fundamentals).

In the world of React, a component is the elementary building block of

an application and represents a declarative description of a visual feature on

a page. The declarative nature of components promotes the predictability of

their output. They accept arbitrary entries, called props, and return React

elements that describe what should appear on the screen. Conceptually,

components are like JavaScript functions. Namely, they serve the same

purpose as JavaScript functions, but they work individually to return JSX

code as elements for UI (Components and Props). JSX stands for JavaScript

XML. It is simply a syntax extension of JavaScript. It allows directly

writing elements in React and React Native, within JavaScript code. The

components are also considered to be independent bits of code that can be

reused. The two types of components are class and functional components

(Aggarwal et al, 2018; React Fundamentals).

In addition to solving some of the common problems faced when

creating JavaScript applications, React components are modular and

emphasise composition over inheritance, which makes code immensely

reusable and testable. Strictly speaking, React has a powerful composition

model (Composition vs Inheritance). In essence, it means complex or

derivative components are built, instead of using the concept of object-

oriented inheritance or something akin to object-oriented inheritance, using

a composition to build up complexity from simple building blocks. That

also means code reuse is primarily achieved through composition rather

than inheritance. Composition has other uses besides making increasingly

more complex components from smaller, simpler building blocks.

Composition can also be used to make derivative components. Additionally,

a React component often has rendering logic, markup declaration, and even

styles in the same file, which promotes the portability of code and the ability

to write shared libraries of components (Masiello, Friedmann, 2017).

State is a way to handle data in React and React Native components.

The state contains data specific to the component that may change over

time. The state is user-defined, and it should be a plain JavaScript object.

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

127

Updating state re-renders the UI of the component and any child component

relying on this data as props. Props or properties are how data is passed

down through the React or React Native application to child components.

Updating props automatically updates any components receiving the same

props. Props are similar to HTML attributes. Simply put, props are used for

customising React components. Difference between state and props is that

state is mutable while props are immutable. Mutable means changeable. On

the contrary, if something is immutable, it can never be changed. This

means that state can be updated in the future while props cannot be updated

(Caspers, 2017; Dabit, 2019).

React lifecycle methods can be understood as a series of events that

occur from the emergence of the React component to the end of its

existence. There are three main stages in a React component lifecycle.

Those are creation or mounting, updating, and deletion or unmounting.

React lifecycle methods are available in a React component and are

executed at specific points in the component’s lifecycle. They control how

the component functions and updates. Lifecycle methods differ in class and

functional components. Each has its own set of lifecycle methods. Mounting

methods are called when an instance of a component is being created and

inserted into the DOM. An update can be caused by changes to props or

state. These methods are called when a component is being re-rendered due

to changed state or props. Unmounting method is called when a component

is being removed from the DOM (Caspers, 2017; Dabit, 2019).

REACT NATIVE CORE COMPONENTS

With React Native, Android and iOS views can be invoked with

JavaScript using the React component. At runtime, React Native creates the

corresponding Android and iOS views for those components. Because

React Native components are backed by the same views as Android and

iOS, React Native apps look and perform like any other apps. These

platform-backed components are called Native Components. React Native

comes with a set of essential, ready-to-use Native Components known as

Core Components. Core Components are considered as UI elements written

within JSX. There are twelve basic React Native elements, and the most

commonly used are shown in Table 1. below (Core Components and Native

Components).

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

128

React Native

UI

Component

Android

View

iOS

View

Web

Analog
Description

< View >

<ViewGroup>

<UIView>

<div>

(non-

scrolling)

A container that supports

layout with flexbox, style,

some touch handling, and

accessibility controls.

<Text>

<TextView>

<UITextView>

<p>
Displays, styles, and nests

strings of text and even

handles touch events.

<Image> <ImageView> <UIImageView> Displays different types

of images

<ScrollView>

<ScrollView>

<UIScrollView>

<div>

A generic scrolling

container that can contain

multiple components and

views.

<TextInput> <editText> <UITextField>
<input

type=’text’/>
Allows the user to enter

text.

Table 1. Frequently used Core Components and their Native and Web Analogs
Source: Core Components and Native Components

LOCAL STATE MANAGEMENT USING HOOKS

Initially, the state of a component could only be manipulated if it was

a class component, using class-specific life cycle methods (State and

Lifecycle). That has changed since the release of React 16.8 in October of

2018. Hooks are a new addition in this React version. They let you use state

and other React features without writing a class. Hooks are basically

functions that allow manipulation of the state and lifecycle methods from

functional components. In other words, Hooks bring to functional

components things that were once only possible with classes, such as the

ability to work with React and React Native local state and effects through

useState and useEffect. Since useState and useEffect Hooks are responsible

for local state management, these two Hooks are considered as major ones

(Introducing Hooks).

The major two Hooks rules that must always be followed are the

following:

1. Never call Hooks from inside a loop, condition or nested function.

Instead, always use Hooks at the top level of React function, before

any early returns. By following this rule, it is ensured that the Hooks

are called in the same order each time the component is rendered.

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

129

This is what allows React to properly preserve the state of the Hooks

between multiple useState and useEffect calls.

2. Don’t call Hooks from regular JavaScript functions. Instead, call

Hooks from React function components or from custom Hooks. By

following this rule, it is provided that all stateful logic in a

component is clearly visible from its source code (Rules of Hooks).

The most important and often used Hook is useState. The purpose of

this Hook is to handle state, whenever any of its data changes, React re-

renders the UI. React will preserve this state between re-renders. The

useState consists of three parts, namely the state variable, the function to set

the state, and the initial value and it returns a pair, the current state value

and a function that allows updating it (Using the State Hook).

The useEffect Hook is one of the tools used for managing the

component's state and deals with the component's lifecycle. It allows

implementation of all of the lifecycle Hooks from within a single API

function, unlike class components which use three of their lifecycle

methods for the same purpose. Just like the name implies, it carries out an

effect each time there is a state change and adds the ability to perform side

effects from a function component. By default, it runs after the first render

and every time the state is updated. React Native performs the clean-up

when the component unmounts and this Hook provides a mechanism for

clean-ups, in addition to the update mechanism. It is important to point out

that this is the optional clean-up mechanism for effects. Every effect may

return a function that cleans up after it. This allows keeping the logic for

adding and removing subscriptions close to each other (Hooks API

Reference; Using the Effect Hook).

GLOBAL STATE MANAGEMENT USING REDUX

In MVC architectures, it is common for data to flow back and forth

through the controller component. Data flows into the controller from views

as the user interacts with the application, and data flows out of the controller

to the view as the underlying data model is updated. On the contrary, React

Native is featured with unidirectional data flow between the states and

views in an application. This means data can flow in a single direction

between the application states and views (Dabit, 2019).

State describes the condition of the application at a specific point in

time and the React Native UI is rendered based on that state. Although

component states and props can process data in simple React Native

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

130

applications, using Hooks tools, it is difficult to accurately handle data for

more complex systems. It can be said that passing data through the

component tree in React is quite complicated. In order to receive data in a

low-level component, the data has to be transferred as props through many

middle-level components unnecessarily. This process results in writing a

bunch of extra code and adding unused properties to middle-level

components. To solve this problem, there are many state management

libraries (Caspers, 2017).

Among the very popular third-party libraries React Native uses is

Redux. Redux is a pattern and implementation library for managing and

updating application state, using events called actions. Redux helps manage

the so-called global state, a state that is needed across many parts of React

Native application (Dabit, 2019; Redux Overview and Concepts). In other

words, by using Redux, the state of the application can be stored globally

and divided among multiple components. Redux was inspired, for the most

part, by Flux. Redux draws on the ideas of Flux and adds in immutability

and the principles of functional programming in an attempt to bring sanity

to frontend applications that are growing in complexity on a regular basis

(Masiello, Friedmann, 2017). It serves as a centralised store for state that

needs to be used across the entire application, with rules ensuring that the

state can only be updated in a predictable fashion. Redux components are

action, reducer and store (Garreau, Faurot, 2018).

An action is a plain object that describes the intention to cause change

with a type property. It must have a type property which tells what type of

action is being performed. An action object can have other fields with

additional information about what happened. By convention, that

information is in a field called payload. An action creator is a function that

creates and returns an action object. The only way to change the state of an

application is to dispatch an action, using reducer function (Garreau, Faurot,

2018; Redux Overview and Concepts).

A reducer is a function that receives the current state and an action

object. Thus, actions and states are held together by a reducer. An action is

dispatched with an intention to cause change. This change is performed by

the reducer. Reducer is the only way to change states in Redux, makes

decisions on how to update the state if necessary and returns the new state.

Reducers must always follow some specific rules. First, they should only

calculate the new state value based on the state and action arguments.

Second rule of reducer is that they are not allowed to modify the existing

state. Instead, they must make immutable updates, by copying the existing

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

131

state and making changes to the copied values. Reducer must not have side

effects is the last rule (Caspers, 2017; Redux Overview and Concepts).

A store is a state container which holds the application state. Redux can

have only a single store in an application. A store is an immutable object

tree in Redux. The store is created by passing in a reducer. In order to create

a store from reducer, Redux uses the utility createStore. This is a function

that takes in a reducer and returns an object with several methods that allow

interaction with the store. Since there is only a single store in Redux

applications, the createStore function should only ever be called once in an

application (Caspers, 2017; Redux Overview and Concepts).

Figure 3. React Native – Redux data flow
Source: Garreau, Faurot, 2018

As presented in Figure 3. Redux unidirectional data flow includes 4

following steps:

1. Components together build up the View. The only purpose of the View

is to display the data passed down by the store. By interacting with the

application’s View, the user triggers an action.

2. An action is sent or dispatched from the view which are payloads that

can be read by reducer. Thus, the reducer function is called with the

current state and the dispatched action. It reads the payloads from the

actions and then updates the store.

3. The store notifies the View by executing their callback functions.

4. The View retrieves updated state and re-renders again (Garreau, Faurot,

2018).

Since Redux itself is synchronous, a Redux store doesn't know anything

about async logic. It only knows how to synchronously dispatch actions,

update the state by calling the root reducer function, and notify the UI that

something has changed. Reducers must never contain side effects, but in

case of async calls it is not possible to avoid them. Redux middlewares were

designed to enable writing logic that has side effects. Commonly,

middlewares are used to deal with asynchronous actions in applications.

They function as a medium to interact with dispatched action before

reaching the reducer (Async Logic and Data Fetching).

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

132

The first principle of Redux is that all application state is contained within

a single store, which is most often a JavaScript object. Redux uses a single store

and has reducer functions that are responsible for managing smaller parts of the

global state. The second principle of Redux is that the application state is

immutable. This means that the object representing the state, at no point, should

be modified in any way by any component. Reducer functions are used to

create a new state object when an action is dispatched, leaving the old state

unmodified. The third and final principle of the Redux framework is that all

functions that compute the new state must be pure functions. Pure functions are

functions that produce no side-effects and are deterministic–for a given set of

inputs, the output will always be the same. In Redux, pure functions are reducer

functions (Masiello, Friedmann, 2017).

In general, Redux can integrate with any UI framework, and is most

frequently used with React and React Native. React-Redux is the official

package that lets both React and React Native components interact with a

Redux store by reading pieces of state and dispatching actions to update the

store (Caspers, 2017).

GLOBAL STATE MANAGEMENT USING CONTEXT API

In addition to props, there is another way parent elements can pass

values down to the children elements in React Native. It is called Context,

and it works in much the same way as props, except that it does not have to

be explicitly passed down the component tree. Instead, if an element

provides its children with Context, any child, no matter how far down the

tree, can have access to it. Therefore, Context was introduced to overcome

the problem of passing props down component tree, by providing a way to

pass data through the component tree without having to pass props down

manually at every level (Masiello, Friedmann, 2017).

Unlike Redux, which is known as a global state management

technology independent of React, Context has been part of the React

library since its 16.3 version, and has become a widely used global state

management solution since release of the 16.8 version, thanks to the

introduction of another important Hook (Context; Introducing Hooks).

The useContext Hook is the one that allows working with React's

Context API, which itself is a mechanism to allow us to share data within

its component tree without passing through props (Hooks API

Reference).

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

133

The usage of Context is based on its API. The Context API includes the

React.createContext, Context.Provider, Context.Consumer, Class.contextType

and Context.displayName. The last two are not frequently used (Context).

React.createContext creates a context object. When React Native

renders a component which subscribes to this context object, it will read the

current context value from the matching Provider in the component tree.

When a component does not have a matching Provider in the component

tree, it returns the defaultValue argument and only then is the defaultValue

used (Context).

Every Context object has a component which allows consuming

components to subscribe to context changes. When a consumer

component asks for something, it finds it in the context and provides it

to where it is needed. Simply put, it acts as a delivery service. In other

words, the Provider component accepts a value prop to be passed to

consuming components that are descendants of this Provider. One

Provider can be connected to many consumers and can be nested to

override values deeper within the component tree. All consumers that are

descendants of a Provider will re-render whenever the Provider’s value

prop changes (Context).

Context.Consumer is a React Native component that subscribes to

context changes. It is used to request data through the provider and

manipulate the central data store when the Provider allows it and it requires

the function as a component. The functional component receives the current

context value and then returns a React node. The value argument, which is

passed to the function, will be equal to the value prop of the closest Provider

for this context in the component tree. If there is no Provider for this context,

the value argument will be equal to the defaultValue which was previously

passed to createContext function (Context).

In the end, there is another way for the functional component to connect

to a Context. Each child functional component can access the Context by

calling useContext Hook that requires a parameter to identify which Context

to connect to. The solution provided by useContext Hook is a much prettier

way to consume context than using Context.Consumer components. The

useContext Hook is incredibly helpful when applying it to components

consuming multiple contexts (Context; Hooks API Reference).

Overall, there are three mostly used steps to set up a global state

management in React Native applications using Context. First step includes

createContext. During the following second step Context Provider and

global state are created. Final step involves a call to useContext Hook to

get state from child components (Context; Hooks API Reference).

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

134

CONCLUSION

The best thing about working with React Native is that the application

uses standard web technologies like JavaScript, yet is fully native. In other

words, React Native applications are blazing fast and smooth and equivalent

to any native application built using traditional Android and iOS

technologies like Objective-C, Swift or Kotlin. However, React Native does

not compromise in terms of performance and overall experience, like

popular hybrid frameworks that use web technologies to build iOS and

Android apps. This is also the reason why, since its release, React Native

has been a widely accepted framework for mobile application development.

Without the need to learn a fundamentally different set of technologies for

each mobile platform, React Native approach called Learn once, write

anywhere is completely justified.

REFERENCES

Aggarwal, Sanchit. et al. 2018. ’’Modern Web-Development using ReactJS’’ in

International Journal of Recent Research Aspects. Vol. 5(1), pp. 133-137.

’’Async Logic and Data Fetching’’ in Redux Documentation. Redux – Den Abramov.

Available: https://redux.js.org/tutorials/essentials/part-5-async-logic. (Accessed:

10.02.2022.)

’’Building For TV Devices’’ in React Native Documentation. Meta Platforms, Inc.

Available: https://reactnative.dev/docs/building-for-tv. (Accessed: 01.02.2022.)

Caspers, Matthias. 2017. ’’React and Redux’’ in Rich Internet Applications w/HTML and

Javascript. The Carl von Ossietzky University of Oldenburg. pp.11-15

’’Components and Props’’ in React Documentation. Meta Platforms, Inc. Available:

https://reactjs.org/docs/components-and-props.html. (Accessed: 01.02.2022.)

’’Composition vs Inheritance’’ in React Documentation. Meta Platforms, Inc. Available:

https://reactjs.org/docs/components-and-props.html. (Accessed: 01.02.2022.)

’’Context’’ in React Documentation. Meta Platforms, Inc. Available:

https://reactjs.org/docs/context.html. (Accessed: 11.02.2022.)

’’Core Components and Native Components’’ in React Native Documentation. Meta

Platforms, Inc. Available: https://reactnative.dev/docs/intro-react-native-

components. (Accessed: 03.02.2022.)

Corti, Nicola. 2022. ’’React Native - H2 2021 Recap’’ in React Native Blog. Meta

Platforms, Inc. Available: https://reactnative.dev/blog/2022/01/21/react-native-

h2-2021-recap. (Accessed: 05.02.2022.)

Dabit, Nader. 2019. ‘’React Native in Action’’, Manning Publications Co. New York.

United States of America. pp. 3-27

‘’Fabric’’ in React Native Documentation. Meta Platforms, Inc. Available:

https://reactnative.dev/docs/fabric-renderer. (Accessed: 05.02.2022.)

Gaba, Rahul. Ramachandran, Ahul. 2019. ’’React Native Internals’’ in React made Native

easy. GitBook. Available: https://www.reactnative.guide/3-react-native-

internals/3.1-react-native-internals.html. (Accessed: 04.02.2022.)

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

135

Garreau, Marc. Faurot, Will. 2018. ’’Redux in Action’’. Manning Publications Co. New

York. United States of America. pp. 10-19.

’’Hooks API Reference’’ in React Documentation. Meta Platforms, Inc. Available:

https://reactjs.org/docs/hooks-reference.html. (Accessed: 09.02.2022.)

’’Introducing Hooks’’ in React Documentation. Meta Platforms, Inc. Available:

https://reactjs.org/docs/hooks-intro.html. (Accessed: 09.02.2022.)

Khoroshulia, Stanislav. 2020. ’’How React Native App Development Works Under the Hood’’

in MobiDev Blog. MobiDev Corporation. PDF Available: https://mobidev.

biz/blog/how-react-native-app-development-works. (Accessed: 05.02.2022.)

Masiello, Eric. Friedmann, Jacob. 2017. ’’Mastering React Native’’. Packt Publishing Ltd.

Birmingham. pp. 190-207.

Matijević, Maja. 2021. ’’React Native's upcoming re-architecture’’ in Collective Mind Dev

Blog. Collective Mind Development d.o.o. Available: https://collectivemind.

dev/blog/react-native-re-architecture. (Accessed: 05.02.2022.)

’’Native Modules Intro’’ in React Native Documentation. Meta Platforms, Inc. Available:

https://reactnative.dev/docs/native-modules-intro. (Accessed: 05.02.2022.)

Paul, Akshat. Nalwaya, Abhishek. 2016. ’’React Native for iOS Development’’. Apress

Media, LLC. United States of America. pp. 2-6

Rawat, Prateek. Mahajan, Archana. 2020. ’’ReactJS: A Modern Web Development

Framework’’ in International Journal of Innovative Science and Research

Technology. Vol 5(11). pp. 698-702

’’React Fundamentals’’ in React Native Documentation. Meta Platforms, Inc. Available:

https://reactnative.dev/docs/intro-react. (Accessed: 03.02.2022.)

’’React Native for Windows + macOS’’ in React Native for Windows + macOS

Documentation, Microsoft Corporation, Available: https://microsoft.github.

io/react-native-windows/. (Accessed: 01.02.2022.)

’’Redux Overview and Concepts’’ in Redux Documentation. Redux – Den Abramov.

Available: https://redux.js.org/tutorials/essentials/part-1-overview-concepts.

(Accessed: 10.02.2022.)

’’Rules of Hooks’’ in React Documentation. Meta Platforms, Inc. Available:

https://reactjs.org/docs/hooks-rules.html. (Accessed: 09.02.2022.)

’’State and Lifecycle’’ in React Documentation. Meta Platforms, Inc. Available:

https://reactjs.org/docs/state-and-lifecycle.html. (Accessed: 02.02.2022.)

’’Team’’ in React Community. Meta Platforms, Inc. Available: https://reactjs.org/

community/team.html. (Accessed: 01.02.2022.)

’’Using the Effect Hook‘’ in React Documentation. Meta Platforms, Inc. Available:

https://reactjs.org/docs/hooks-effect.html. (Accessed: 09.02.2022.)

’’Using the State Hook’’ in React Documentation. Meta Platforms, Inc. Available:

https://reactjs.org/docs/hooks-state.html. (Accessed: 09.02.2022.)

NOTES ON THE AUTHORS
Tamara RANISAVLJEVIĆ, is a student associate at the Faculty of Applied

Management, Economics and Finance, University Business Academy in Novi Sad. E-mail.
tamara.ranisavljevic@gmail.com

Darjan KARABAŠEVIĆ, Ph.D. is a Vice-dean for Scientific Research and an
Associate Professor of Management and Informatics at the Faculty of Applied

https://mobidev/
https://collectivemind/
https://microsoft.github/
https://reactjs.org/

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

136

Management, Economics and Finance, University Business Academy in Novi Sad, Serbia.
E-mail. darjan.karabasevic@mef.edu.rs.

Miodrag BRZAKOVIĆ, Ph.D., is a Professor and Council President at the Faculty
of Applied Management, Economics and Finance, University Business Academy in Novi
Sad. E-mail. miodrag.brzakovic@mef.edu.rs.

Gabrijela POPOVIĆ, Ph.D., is an Associate Professor at the Faculty of Applied
Management, Economics and Finance, University Business Academy in Novi Sad, Serbia.
E-mail: gabrijela.popovic@mef.edu.rs.

Dragiša STANUJKIĆ, Ph.D. is an Associate Professor of Information Technology
at the Technical Faculty in Bor, University of Belgrade. E-mail. dstanujkic@tfbor.bg.ac.rs.

