
309

PHYSICAL DESIGN OF MYSQL DATABASE

Ivan ŠUŠTER
Darjan KARABAŠEVIĆ

Dragiša STANUJKIĆ
Tamara RANISAVLJEVIĆ

Miodrag BRZAKOVIĆ

Abstract: A database’s physical architecture plays a critical role in guar-
anteeing effective data access and system performance. This research high-
lights the significance of workload analysis and index selection and pre-
diction in improving query processing speed and database performance. It 
explores a number of indexing techniques, outlining the uses and advantages 
of B-Trees, Full-Text, Spatial, and Hash indexes, among others. In order to 
maximize database speed, it also covers denormalization and partitioning 
techniques including vertical and horizontal partitioning. By putting these 
strategies to cautious use and keeping an eye on things constantly, databases 
can be optimized and scalable to match changing system requirements.
Keywords: MySQL, Physical design, Indexing, Denormalization, Partitioning

INTRODUCTION

In the world of databases, the physical design of the database plays a 
key role in ensuring the efficiency and speed of data access. Optimal func-
tioning of the database requires a deep understanding of the context and 
proper application of its physical aspects. The process of physical design 
of the database begins after the development of conceptual and external 
schemes. Due to the dynamic nature of business requirements and techno-
logical advances, physical design is not a static process, but requires con-
stant review and adaptation, ensuring that the efficiency and performance of 
the database is constantly improving in line with the evolving needs of the 
systems that the database supports. 

This paper highlights the importance of predicting and selecting the 
right indexes, which are crucial for speeding up query processing and are 
the basis of physical database design. An equally important component of 
that process is database load analysis, as it is the load that enables effective 
targeting and optimization by seeing and understanding which queries the 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

310

database system uses most often, as well as how often those queries are 
executed. 

In addition to indexing, there are other methods and techniques criti-
cal to optimizing database performance. Horizontal and vertical table parti-
tioning are strategies that allow a database to manage large amounts of data 
more efficiently by dividing it into smaller, more manageable segments. 
Denormalization, although at first glance it may seem like a step back from 
the norms of database design, in certain situations it can significantly im-
prove the performance of reading data. Those strategies and methods are 
necessary to achieve optimal performance, and are presented in more detail 
in this paper.

WORKLOAD

Workload in the context of databases refers to the total volume of 
queries, transactions and operations processed by the database system in a 
certain period of time (Almeida et al, 2023; Domaschka et al, 2023). This 
includes all types of database access and interaction, such as reading, writ-
ing, updating, and deleting data, initiated by users or applications. Work-
load definition enables database administrators and performance engineers 
to analyze and understand how database resources are being used, which is 
critical to optimizing system performance, capacity, and reliability. Work-
load analysis helps identify the most demanding operations and potential 
performance bottlenecks, which is necessary for effective capacity plan-
ning, scaling and application of appropriate optimizations (Koopmann, 
2009; What is workload management). 

The description and analysis of the workload includes the following 
(Ramakrishnan, Gehrke, 2002): 

• A list of queries and how often they are used against all queries and 
updates, 

• List of updates and their frequency,
• Target performance for each type of query or update.
For each inquiry it is necessary to specify: 
• Which relations are accessed, 
• What attributes are required in the SELECT statement,
• Which attributes are joined or selected in the WHERE statement and 

how selective those conditions are. 
Each update must specify: 
• The type of update (INSER, DELETE, UPDATE) and the relation 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

311

being updated,
• For the UPDATE command, the field to be updated. 
The description of the query is very important in order to be able 

to carry out an physical design of the database, i.e. it is very important to 
decide when indexes will be used and which queries can gain speed during 
execution, which means that even when executing some other queries it can 
lead to an increase runtime which may be the case with update commands.

INDEXES
Indexes are data structures that allow efficient and fast access to data 

in the database. The main reasons for using the index are (Gao et al, 2023): 
• Better performance: indexes enable the presenter to quickly access 

data. 
• Uniqueness of data: indexes ensure that the values of the columns 

that are indexed are not repeated. So in databases, an index is usually auto-
matically created for all primary keys. 

During the physical design of the database, the choice of indexes is 
very important, that is, it is important to decide which indexes to create and 
on which columns. Performance depends on the indexes used as well as on 
which fields and/or relations they are used. It is also necessary to determine 
whether the index should be clustered, sparse or dense. 

Another definition of indexes would be that they are a data structure 
that speeds up the search of tables in the database, i.e. it is not necessary to 
go through every row of the table every time you access the database. In 
addition to index selection, denormalization of the database schema should 
be considered, or which of the normal forms should be used for database 
design. 

The MySQL database management system uses different types of in-
dexes that provide query optimization and support different types of appli-
cations. The types of indexes used in the MySQL database management 
system are (Maesaroh et al, 2022): 

• B Trees (eng. B-Tree) index - are usually used to facilitate efficient 
data retrieval and query processing. It is used with the =, >, >=, <, <=, BE-
TWEEN and LIKE operators. It can be used in MyISAM, MEMORY and 
InnoDB storage engine. 

• Full-Text Index - MySQL supports a full-text index which is nec-
essary to enable the efficiency of text-based search operations. A full-text 
index is useful in applications that require advanced text search capabilities, 
that is, that involve large text data sets. It is used by InnoDB and MyISAM 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

312

storage engine. 
• Spatial Index - these indexes are necessary for applications that in-

clude geographic or spatial data. Spatial indexes enable efficient process-
ing of spatial queries, such as proximity searches and spatial joins, making 
them crucial for applications that use geographic objects. InnoDB and My-
ISAM use B-tree indexes for spatial data, while other storage engines use 
R-tree indexes. 

• Hash index - MySQL also supports hash indexes, which are most 
effective for searching for exact data, ie when using the equal sign or <=> 
WHERE part of the query, because they provide fast access to data records. 
They are used by the MEMORY storage engine. All these types of indexes 
listed in the MySQL database management system meet different query re-
quirements and data characteristics, enable efficient query processing and 
retrieval of data in the database. 

In addition to the previously mentioned index types, it is also possible 
to create composite indexes (multi-column index), which consist of several 
columns (up to 16). With these indexes, the order of specifying the columns 
when creating the index is very important to ensure that the index will be 
used. 

This index will be used only if the indexed columns used in the 
WHERE part of the query are listed in order from left to right, without 
skipping columns. So if a composite index is created over 3 columns, col1, 
col2, col3, the index will be used if the query is executed over col1, col1 
and col2, col1, col2 and col3. When choosing an index type for a MySQL 
database, it is crucial to carefully evaluate the use case and the queries that 
the application frequently executes. 

Different types of multi-column indexes, such as the ones above, pro-
vide different advantages based on the queries being processed, for example 
if you need to run multi-column queries frequently and know that the first 
column in the composite index will always be included. By understanding 
the unique application requirements, the most appropriate index type can be 
selected to improve query processing efficiency. By testing and monitoring 
different types of indexes and their impact on performance, the indexes that 
best fit the database can be identified.

CHOOSING THE RIGHT INDEXES

When creating an index, it is necessary to pay attention to the queries 
that need to be executed. So, for example, if in the WHERE part, selection 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

313

is made by some range, such queries gain the most performance if a B+ tree 
is used. If in the WHERE part the extraction is done using the equals sign, 
then the greatest benefit is obtained by using the Hash index.

Before adding indexes, it is also necessary to pay attention to the in-
fluence of them. When updating a column that has an index, then it is nec-
essary to update the indexes as well. Also, if an INSERT or DELETE is per-
formed, the indexes need to be updated if the value of the attribute changes.

The following instructions will explain how to select the index 
(Almeida et al, 2023; Maesaroh et al, 2022):

1. You should not create an index if it will not contribute to speeding 
up the execution of a query, including those that are part of updates. When-
ever possible, choose indexes that will speed up more than one query.

2. Attributes mentioned in the WHERE clause are candidates for in-
dexing.

• Extraction by exact value suggests that we should consider an index 
over the selected attributes, namely a hash index.

• Extraction by value range suggests that a B+ tree should be consid-
ered over the extracted attributes.

3. A multi-attribute search key should be considered in the following 
situations:

• A WHERE clause contains a condition on more than one attribute.
• If they enable index-only strategies (where access to relations can 

be avoided) in important queries. This can lead to attributes that would be 
part of the key even though they are not mentioned in the WHERE clause. 
When creating an index over search keys with multiple attributes, if interval 
queries are also accepted, one should be careful about the order of attributes 
in the search key.

4. At most one index over a given relation can be clustered, which 
greatly increases performance. So it is necessary to choose the clustered 
index carefully.

• Queries that contain a range can gain a lot from a clustered index. If 
several interval queries are used over the relation, which include different 
sets of attributes, when choosing which index should be clustered, the se-
lectivity of the queries and their relative frequency in the workload should 
be considered.

• If the index enables an index-only strategy for the query that needs 
to be accelerated, then it does not need to be clustered. Clustering has an 
effect only when retrieving data.

5. The B+ tree is generally recommended because it is good for both 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

314

interval and exact value queries. A hash index is better in the following 
situations:

• A hash index should be used with a nested loop join, an indexed 
relation of inner relations, where the search key includes the columns on 
which the join is performed. The reason for this is that equality extraction is 
performed for each n-tuple in the outer loop.

• When there are very important equality queries and there are no in-
terval queries, including attributes that are the search key.

6. After compiling the list of desired indexes, their impact on updates 
in the workload should be considered.

• If index maintenance slows down the update operation, consider 
dropping it.

• Keep in mind that adding an index can speed up data updates as well.

PHYSICAL DESIGN OF DATABASE

The need for the physical design of the database arises after the logi-
cal design of the database in order to optimize the operation of the database. 
The physical design of the database includes making decisions about how 
the data will be stored in the database as well as the choice of methods that 
will allow access to that data. 

After the initial physical design of the database, it is necessary to 
continue monitoring the performance of the database during access, that is, 
data manipulation. Monitoring and tracking database data operations pro-
vides insight into which queries need to be optimized to further improve 
database performance. If necessary during operation, it is possible to make 
new settings such as adding new indexes or some of the partitioning tech-
niques to improve performance. That is why it is very important to monitor 
and analyze the statistics and performance of queries against the data in the 
database. When physically designing a database, several aspects should be 
carefully considered to ensure an efficient design. These considerations are 
necessary to optimize performance, manage workloads, and adapt to chang-
ing demands. 

During physical design, attention should be paid to the following key 
aspects (Teorey et al, 1986; Bahry et al, 2022; Rao et al, 2002):

1. Flexibility and future requirements - database design should repre-
sent the current state but also be flexible in order to adapt to future require-
ments. 

2. Conceptual, logical and physical design - the physical design phase 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

315

includes conceptual design, logical and physical design, each of which 
plays a key role in shaping the structure of the database. 

3. Query performance and workload - Physical design significantly 
affects query performance. 

4. Continuous monitoring and adjustment - Continuous monitoring 
and improvement of the physical design and use of indexes is necessary in 
order to optimize the performance of the database.

DENORMALIZATION

In database architecture, denormalization is the addition of redundan-
cy to the database schema with the goal of improving query performance 
and simplifying the retrieval of required data. This methodology involves 
deviating from the rules of database normalization in order to gain perfor-
mance when accessing data that is important (Lee, Zheng, 2015). 

Denormalization belongs to the physical design of the database at the 
logical level, where the normalized conceptual model of the database is tak-
en as the starting point during denormalization. The fully normalized model 
is then denormalized, whereby normal forms are violated, data redundancy 
is introduced, and data integrity is violated (Buxton et al, 2009).

 It is important to note that by introducing redundancy and violating 
data integrity, it is necessary to use the trigger mechanism to compensate 
for the consequences of denormalization, that is, to preserve data integrity. 
Below are the types of denormalization as well as examples of what this 
would look like and how to create triggers to preserve data integrity. The 
two types of denormalization that exist are denormalization of two entities 
in a one-to-one relationship and denormalization of two entities in a one-to-
many relationship (Buxton et al, 2009).

If we take into account that there are entities employees and insurance 
policies, by denormalization those two entities can be merged into one in 
order to avoid frequent merging of tables in queries.

 employee(emp_id, name, date_of_birth, address)
 insurance_ policy(emp_id, policy_id, amount).
The functional dependencies of these entities are: 
employee: emp_id -> name, date_of_birth 
insurance_policy: emp_id -> policy_id, amount.
Denormalization of these tables represents an approach where it is 

necessary to combine the attributes of these two tables into one new com-
bined table, joining them based on the primary key. This process as already 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

316

stated aims to optimize query performance and simplify data access by re-
moving the need to use table joins in queries. Creating a new combined ta-
ble, all information is easily accessible within a single table, thus increasing 
the efficiency of the database. 

employee(emp_id, name, birth_date, address, policy_id, policy_
amount).

Since it is a one-to-one connection, the integrity of the data remains 
the same and the new employee table remains in 3NF.

In the case of a one-to-many relationship, it is also possible to per-
form denormalization by joining tables and thereby eliminate the need to 
use joins when executing queries, the greatest efficiency is achieved if we 
perform denormalization on tables where joins and queries are often per-
formed on those tables. 

The following example shows a one-to-many relationship type and an 
example of denormalization. 

employee(emp_id, name, address, department_id) 
department(department_id, name) 

The functional dependencies of these two tables are: 

employee: emp_id -> name, address 
department: department_id -> name 

Denormalization will be performed by merging the employee and de-
partment tables into one called employee whose example is given below, 
and will also contain department data. In this way, the need to use joins 
when executing queries is successfully eliminated. 

employee(emp_id, name, address, department_id, department_name) 

If such a table were to be used, there would be possible problems 
when deleting a row in the table because data on the number and name of 
the department would be lost. 

Denormalization, especially of the one-to-many type that involves 
joining tables to improve queries, should be approached with caution and 
used for specific cases, i.e. when query execution time is unsatisfactory and 
query time needs to be reduced. Implementing denormalization to optimize 
query performance should be carefully considered, although it can speed 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

317

up data retrieval, it leads to potential complexities in maintaining data in-
tegrity. In situations where query execution time is acceptable, performing 
denormalization is not recommended. Problems associated with denormal-
ization such as increased storage requirements and data redundancy may 
outweigh the benefits of denormalization. 

Denormalization can also affect data management, that is, changing, 
adding and deleting data. Therefore, it is necessary to carefully evaluate 
the advantages and disadvantages, as well as consider some other available 
physical database design strategies such as indexing. Only in cases where 
other approaches are inadequate, it is possible to consider denormalization 
as a potential solution and with caution about the impact on data integrity.

PARTITIONING

Table partitioning is a technique used to optimize database perfor-
mance by dividing a single table into two or more smaller tables. Partition-
ing aims to reduce the amount of data that the database management system 
needs to process when executing queries. By dividing tables into several 
smaller tables, the system can use resources more efficiently, resulting in 
faster query processing time (Kumar, 2016). 

There are two methods of partitioning:
• Vertical partitioning i 
• Horizontal partitioning. 

Both methods offer different advantages and are suitable for solving 
different problems. Both vertical and horizontal partitioning offer benefits 
in terms of performance and query optimization. The choice between them 
depends on factors such as the nature of the data, the query characteristics, 
and the scalability requirements of the database system. By carefully eval-
uating these factors, partitioning can be implemented to improve system 
performance.

Vertical table partitioning involves dividing the columns of the ob-
served table into two or more tables, each containing columns based on 
their frequency of use in queries. This process optimizes data retrieval by 
separating frequently accessed columns into one table and less frequently 
accessed columns into another table. The division can continue even fur-
ther, i.e. to more tables, with columns grouped according to the queries 
used. In each table resulting from vertical partitioning, the primary key of 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

318

the original table is included.
 This primary key serves as a link that connects rows in partitioned 

tables. Using a primary key in each partitioned table makes it easier to ma-
nipulate the data in the partitioned tables. This approach improves database 
performance by reducing the amount of data that needs to be processed 
during query execution. Queries can be such that they search data in only 
one partition that contains the relevant columns. In addition, vertical par-
titioning can lead to better data storage efficiency and resource utilization, 
especially in cases where certain columns are larger or less frequently used 
or accessed than other columns. 

Example table before partitioning: 

employee (emp_id, name, address, date_of_birth, policy_id, policy_
amount, policy_valid_from, policy_valid_to) 

Appearance after partitioning: 

employeesInsurancePolicy (emp_id, policy_id, amount, policies, pol-
icy_valid_from, policy_valid_to) employeeData (emp_id, name, address, 
date_of_birth).

 
After partitioning the tables, it is necessary to define a view that com-

bines the data from the partitioned tables and thus creates a table that is 
identical to the initial table. Creating a view hides vertical partitioning and 
the need to join the resulting tables to get the initial table. However, in order 
to ensure the integrity and consistency of the data, stored procedures (or if 
available in the DBMS, triggers) for updating, adding and deleting rows 
from the view that will reflect changes in each partitioned table should be 
defined on the view created in this way. The MySQL database management 
system does not support vertical partitioning, that is, dividing a table ac-
cording to columns into several smaller tables, so the example above is the 
only way to currently perform vertical partitioning in MySQL.

Horizontal partitioning, also known as row-based partitioning, is a 
database optimization technique that involves dividing a table into smaller 
partitions based on certain criteria. This method is especially useful for ta-
bles with a large number of rows, as it helps improve query performance. 

When applying horizontal partitioning, the table is divided into dif-
ferent partitions, each of which contains a subset of rows that satisfy some 
conditions. One common partitioning criterion is time-based, where data 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

319

is partitioned based on date, one partition can contain data for each month, 
making separate partitions for January, February, etc. This temporal par-
titioning enables efficient data management, as queries can be made for 
specific time ranges without searching the entire table. 

Data can also be partitioned based on the range of values within a 
particular column. For example, in the table of invoices, partitioning can be 
done based on the amount of invoices. Each partition would contain data 
for a certain range of invoice amounts. Using horizontal partitioning, data 
can be efficiently divided into multiple partitions, thus improving database 
performance and scalability.

HORIZONTAL PARTITIONING IN MYSQL DATABASE

In MySQL, in order to perform horizontal partitioning, it is necessary 
to use storage engines that support horizontal partitioning. What is import-
ant to note is that in the current version of MySQL (version 8.0) all parti-
tions of a partitioned table must use the same storage engine. 

In the current version of MySQL, the only storage engines that sup-
port partitioning are InnoDB and NDB (NDB cluster). With the fact that 
partitioning by key or linear key is possible with the NDB storage engine, 
while other types are not supported for tables using this engine (Overview 
of Partitioning in MySQL). 

When partitioning a table, the default storage engine is used. Howev-
er, in order to use another engine, it is necessary to explicitly state which 
one is used in the part for creating the table, before any partitioning options. 
This ensures that the specified engine is applied to the entire table, this is 
important since it is impossible to partition the table if the storage engines 
do not match. 

When managing data within a partitioned table, handling old or un-
necessary data is relatively simple. It is common to remove a specific par-
tition such as a partition that contains outdated data. This method makes it 
possible to efficiently remove unnecessary data leaving the rest of the table 
accessible. 

The ability to store data that meets certain criteria on one or more 
partitions brings significant benefits, especially in optimizing search opera-
tions. When searching with a condition in the WHERE clause, the search is 
automatically limited to the relevant partition and thus eliminates the need 
to scan unnecessary data. 

Table partitioning also allows you to customize the partitioning 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

320

scheme as needed. This means that data can be reorganized to better meet 
the criteria of frequently used queries, even if the original partitioning was 
not designed to optimize certain queries. 

The types of partitioning in MySQL are the following: 
1. RANGE - table partitioning based on a range, where each partition 

includes rows whose values fall within a defined interval. These intervals 
should represent continuity, meaning that each range is adjusted to the next 
range so that there is no overlapping of range boundaries. To define these 
limits, the VALUES LESS THAN operator is used, which enables precise 
definition of the upper limit for each partition. Later, if there is a frequent 
increase in the range, ALTER TABLE can be used to add new partitions 
with a new range of values. Another example that is very useful in practice 
is partitioning by date, that is, it is possible to partition the table so that rows 
related to a specific time period are displayed, which is shown in the follow-
ing example (the same table as in the previous examples is used). 

2. LIST - similar to RANGE partitioning, because it is necessary to 
explicitly define the value based on which the partitioning is performed. 
However, the difference is in how the range of partitioning is defined, with 
RANGE partitions are determined by the adjacent range of values, while 
with LIST partitioning, the membership of the partition is determined based 
on the membership of the column values within predefined lists of values. 
This type of partitioning allows more flexibility since it is not necessary to 
have a continuous range of values. For this type of partitioning, the clause 
PARITION BY LIST(col) is used, where col is the column on the basis of 
which the membership of a partition is determined and which returns an 
integer, also after each partition comes the definition of the list of values of 
each partition using VALUES IN (list_item1, list_item2, …), where list list 
of comma-separated integers. When defining the list, it is necessary to take 
into account all possible values that can be entered in the column by which 
the partitioning is performed, in the support column there is an error that 
there is no partition for that value. 

3. COLUMNS - the type of partitioning allows the use of multiple 
columns on the basis of which partitioning is performed, there are also two 
variants of this partitioning, namely RANGE COLUMNS and LIST COL-
UMNS partitioning.

a. RANGE COLUMNS is very similar to RANGE partitioning but 
allows the definition of partitions based on multiple columns. This function-
ality provides the possibility of partitioning data based on more complex 
criteria that include several attributes. Another advantage of this way of 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

321

partitioning is that it provides the possibility of using other types of data 
in addition to integers and dates, namely strings. This capability provides a 
partitioning solution that is adaptable to the specific needs and characteris-
tics of the data set.

b. LIST COLUMNS partitioning also builds on LIST partitioning 
and, like RANGE COLUMNS partitioning, allows multiple columns to be 
used to create partitions. In addition, it allows the use of other data types 
such as date and datetime, as well as strings.

4. HASH - partitioning is used for even distribution of data over a pre-
determined set of partitions. While RANGE or LIST partitioning requires a 
partition specification for each column value or set of values, HASH parti-
tioning simplifies this process by automatically determining the appropriate 
partition. This type makes it easy to use by requiring only the specification 
of the partitioning or hashing column and the desired number of partitions. 
Partitioning is done on the basis of the column, i.e. the value given by the 
module, which represents the number of given partitions. A general formula 
would be if bp represents the number of partitions given, i the value of the 
expression and n the number of the partition where the expression will be 
placed then .

5. KEY - key partitioning in MySQL works similarly to hash parti-
tioning, with a difference in the way the partitioning is performed. While 
hash partitioning relies on a user-defined hashing expression and KEY par-
titioning uses the hash function provided by MySQL, also instead of the 
HASH keyword, KEY is used when defining partitioning. KEY partitioning 
specifies a list with zero or more column names. It is important to note that 
columns marked as a partition key must either be part of or contain the 
entire primary key of the table if it exists. If no column is specified for the 
partition key, MySQL uses the primary key of the table. Another significant 
difference from other partitioning methods is that the columns used for key 
partitioning are not limited to integer values only. This flexibility allows a 
wider range of data types to be used for partitioning. 

6. SUBPARTITION is a further division of partitions. Further parti-
tioning is possible only by range or list and it is possible to further use hash 
or key partitioning. Each of the partitions must have the same number of 
subpartitions, it is also possible to name the sub-partitions, and if one sub-
partition is named, the other subpartitions must also be named.



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

322

CONCLUSION

Physical design of a MySQL database is a key process in ensuring its 
optimal performance, scalability and reliability. Through careful consider-
ation of factors such as indexing, denormalization, partitioning, and caching 
mechanisms, it is possible to fine-tune the database structure to meet specif-
ic operational requirements. The essence of this process lies in the regular 
monitoring and analysis of database performance, in order to identify op-
portunities for improvement and implement the necessary changes. 

In addition to direct technical adjustments, it is important to consider 
the possibilities of upgrading the hardware, which can significantly contrib-
ute to the performance of the base. The success of physical design is not 
only in the application of individual techniques, but also in strategic plan-
ning and continuous monitoring of the database, to ensure that the changes 
lead to the desired improvements. 

Therefore, we conclude that continuous evaluation of database per-
formance, using appropriate techniques and tools for monitoring and anal-
ysis is the foundation of the physical design process. Such an approach en-
ables not only the identification of areas for improvement, but also ensures 
that the database is constantly evolving to meet both the current and future 
demands of the systems it serves.

REFERENCES
Almeida, D., Lopes, M., Saraiva, L., Abbasi, M., Martins, P., Silva, J., & Váz, P. (2023, 

August). Performance Comparison of Redis, Memcached, MySQL, and Post-
greSQL: A Study on Key-Value and Relational Databases. In 2023 Second Inter-
national Conference On Smart Technologies For Smart Nation (SmartTechCon) 
(pp. 902-907). IEEE.

Bahry, F. D. S., Amran, N., Putri, T. E., & Ramli, M. I. (2022). Database design of the ma-
laysia public figures web archive repository: a social and cultural heritage web 
collections. Collection and Curation, 41(4), 133-140.

Buxton S., et al. Database Design: Know it all, Morgan Kaufmann, 2009.
Domaschka, J., Volpert, S., Maier, K., Eisenhart, G., & Seybold, D. (2023, April). Using 

eBPF for Database Workload Tracing: An Explorative Study. In Companion of 
the 2023 ACM/SPEC International Conference on Performance Engineering (pp. 
311-317).

Gao, P., Chen, Q., Xie, X., & Wang, C. (2023, May). Research on Performance Opti-
mization of MySQL Database. In 2023 IEEE 3rd International Conference on 
Information Technology, Big Data and Artificial Intelligence (ICIBA) (Vol. 3, pp. 
869-872). IEEE.

Koopmann, J. 2009. “What Is Your Definition of Databse Workload?” in Database Journal. 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

323

Available: https://www.databasejournal.com/oracle/what-is-your-definition-of-
database-workload/ (Accessed: 14.01.2024.)

Kumar, A. S. (2016, August). Performance analysis of MySQL partition, hive parti-
tion-bucketing and Apache Pig. In 2016 1st India International Conference on 
Information Processing (IICIP) (pp. 1-6). IEEE.

Lee, C. H., & Zheng, Y. L. (2015, October). SQL-to-NoSQL schema denormalization and 
migration: a study on content management systems. In 2015 IEEE International 
Conference on Systems, Man, and Cybernetics (pp. 2022-2026). IEEE.

Maesaroh, S., Gunawan, H., Lestari, A., Tsaurie, M. S. A., & Fauji, M. (2022). Query op-
timization in mysql database using index. International Journal of Cyber and IT 
Service Management, 2(2), 104-110.

“Overview of Partitioning in MySQL“ in MySQL Documentation, Available: https://
dev.mysql.com/doc/refman/8.0/en/partitioning-overview.html (Accessed: 
20.01.2024.)

Ramakrishnan, R., & Gehrke, J. (2002). Database management systems. McGraw-Hill, 
Inc.

Rao, J., Zhang, C., Megiddo, N., & Lohman, G. M. (2002). Automating physical database 
design in a parallel database. Proceedings of the 2002 ACM SIGMOD Interna-
tional Conference on Management of Data.

Teorey, T. J., Yang, D., & Fry, J. P. (1986). A logical design methodology for relational da-
tabases using the extended entity-relationship model. ACM Computing Surveys, 
18(2), 197-222.

“What is workload management?” in Microsoft Learn. Available: https://learn.micro-
soft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-ware-
house-workload-management (Accessed: 14.01.2024.)

Notes on the authors:
Ivan ŠUŠTER, B.Sc., is a M.Sc. student at the Faculty of electronic engineering, 

University of Niš. E-mail: ivansu995@gmail.com
Darjan KARABAŠEVIĆ, Ph.D. is a Full Professor and Dean of the Faculty of Applied 

Management, Economics and Finance, University Business Academy in Novi Sad. E-mail: 
darjan.karabasevic@mef.edu.rs

Dragiša STANUJKIĆ, Ph.D. is a Full Professor of Information Technology at the 
Technical Faculty in Bor, University of Belgrade. E-mail. dstanujkic@tfbor.bg.ac.rs

Tamara RANISAVLJEVIĆ, B.Sc. is a M.Sc. student at the Faculty of Applied Man-
agement, Economics and Finance, University Business Academy in Novi Sad. E-mail. ta-
mara.ranisavljevic@gmail.com

Miodrag BRZAKOVIĆ, Ph.D., is a Full Professor and Council President at the Facul-
ty of Applied Management, Economics and Finance, University Business Academy in Novi 
Sad. E-mail. miodrag.brzakovic@mef.edu.rs




