
281

DATABASE REPLICATION:
ENSURING MYSQL DATA INTEGRITY

Ivan ŠUŠTER
Darjan KARABAŠEVIĆ

Aleksandar ŠIJAN
Đorđe PUCAR

Luka ILIĆ
Goran JOCIĆ

Abstract: In order to maintain stable, accessible data, database administra-
tion must prioritize efficiency, consistency, and fault tolerance. Data dissem-
ination between servers is facilitated via database replication, especially in
MySQL, which improves availability and readability. This paper explores the
fundamentals of MySQL replication, emphasizing the configuration procedure
that includes both the more recent Global Transaction Identifiers (GTID) and
the more conventional replication through binary log files. It also introduces
group replication, which guarantees high availability and fault tolerance in
distant contexts, and provides helpful administration commands. The article
examines MySQL replication kinds, contrasts replication and mirroring, and
provides configuration instructions. It also offers information on GTID repli-
cation, including setup instructions. Additionally, it covers MySQL replication
commands and goes over the advantages of group replication. All things con-
sidered, MySQL database replication is essential to guaranteeing data avail-
ability, scalability, and integrity in contemporary database systems.
Keywords: MySQL Replication, Database Management, GTID (Global
Transaction Identifiers), Fault Tolerance,
High Availability

INTRODUCTION

In the context of databases, it is important to maintain efficiency,
consistency and fault tolerance so that data is stable and easily accessible.
Database replication plays an important role in this process, as it enables
the distribution and synchronization of data across multiple servers, thus
improving data availability and readability.

Focusing on MySQL replication, one of the leading database man-
agement systems, the basic principles of replication are presented, with an

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

282

overview of the different types of replication available within the MySQL
system (Šušter & Ranisavljević, 2023; Zmaranda et al., 2021). This is fol-
lowed by an analysis of the MySQL replication configuration process, with
steps for setting up traditional replication using binary log files, including
setting up a primary (or master) and replica (or slave) server.

Additionally, the use of Global Transaction Identifiers (GTIDs) for
replication is presented, highlighting the benefits of this approach. Further-
more, an overview of useful commands for managing MySQL replication
is provided and the concept of group replication is explained. It is modern
functionality within MySQL that provides a high level of availability and
fault tolerance in distributed environments.

REPLICATION OF DATABASE

Database replication involves creating and maintaining copies of da-
tabase objects on multiple servers in a distributed database system. Rep-
lication is a fundamental mechanism that improves scalability and fault
tolerance in databases (Pohanka & Pechanec, 2020). It allows data to be
available from different servers, enabling parallel processing of queries and
load balancing (Kemme, Alonso, 2010).

There are different types of database replication mechanisms, such as
master-slave replication, one-way data replication, full replication, partial
replication, and scalable replication for transactional web applications. These
mechanisms serve various purposes such as backup, reporting, data distribu-
tion, and ensuring data availability and reliability (Yadav et al, 2013).

Based on the previous definitions, it can be concluded that database
replication is a very important concept in database management systems,
which offers advantages such as scalability, resilience to server failure, etc.
and therefore there are different mechanisms or types of replication to satisfy
different requirements and ensure data integrity in distributed environments.

Another definition of replication would be that it is the process of
copying a database from one server to one or more other servers to improve
database availability, as well as database scalability and performance. This
process also includes the synchronization of the „main” base and the repli-
cas of that main base (Drake, 2021).

TYPES OF REPLICATION IN MYSQL DATABASE

In MySQL, replication is asynchronous, replicas do not have to be
connected constantly to receive new changes from the source or main da-

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

283

tabase, and depending on the configuration, it is possible to make replicas
of all databases, selected databases or only selected tables from a database.

Some of the advantages provided by MySQL replication are (Repli-
cation):

• Scaling - spreading the load across multiple replicas to improve per-
formance. In this environment, all writes and updates must be done on the
source or master server. Reading from the database can also be performed
on one of the replicas. This model can improve write performance (because
the origin server is dedicated only to writes and updates), while greatly
increasing read speed as the number of replicas increases (Milani & Navi-
mipour, 2016).

• Data security - since the replica can pause the replication process,
it is possible to start the backup process on the replica without conflicting
with the existing data on the source server.

• Analytics - data can be added to the source server without interfering
with or affecting the performance of the source server, while information
analysis is performed on the replica.

• Remote data distribution - replication can be used to create a local
copy of data to be used by remote locations without permanent access to the
source server.

There are two types of replication in MySQL:
1. The traditional method - includes the use of a binary log file to rep-

licate changes made on the master server to one or more slave servers. This
method relies on recording changes to a binary log file and then repeating
these changes on other servers to keep the data in sync. The way it works
is that replica or slave server creates I/O thread which is used to copy data
from the binary log file from the primary/master server to the relay log file
on the slave server and than the SQL thread is used to execute the changes
written in the relay log.

2. Replication with Global Transaction Identifiers (GTID) - is a more
advanced and newer method that provides a unique identifier for each trans-
action on all servers in the replication topology. GTID simplifies the process
of monitoring and managing replication, especially in complex multi-server
replication setups. GTID assignment differentiates between source transac-
tions and replicated transactions that are replayed on the replica. When a
transaction is executed on the source server, a new GTID is assigned to it,
provided that the transaction is recorded in the binary log file.

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

284

Figure 1 MySQL replication process

These two methods offer different approaches to database replication.
The traditional method of using a log file is a well-established method that
is widely used to replicate data changes between servers. In contrast, repli-
cation with GTID introduces a more efficient way of managing replication.

MySQL users can choose the approach that best suits their replication
needs, whether it’s the traditional method or GTID for improved transaction
management and tracking on distributed servers.

MySQL also supports different types of synchronization during rep-
lication. The basic type of synchronization is one-way, asynchronous rep-
lication, where one server serves as the main or source server, while one or
more other servers serve as replicas. And this type of replication in MySQL
is the most used.

Figure 2 One way replication

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

285

In addition to asynchronous replications in MySQL, there are also
synchronous replications that are characteristic of an NDB cluster. As well
as semi-synchronous and delayed replication.

DIFFERENCES BETWEEN REPLICATION AND MIRRORING

While replication represents the process of copying data from the
source server to the servers where the replicas are located, mirroring rep-
resents an identical copy of the database. The term mirroring means that
changes made in the database are immediately mirrored and applied to cop-
ies or replicas.

In MySQL, with master-slave replication, the master or source server
processes write and update operations and transfers changes to one or more
replicas asynchronously, and this configuration provides advantages such
as load balancing, but it does not guarantee data consistency in real time
between the main base and the replicas.

On the other hand, mirroring prioritizes data consistency in real time.
This means that when a change is made to the master database, it is imme-
diately mirrored to the „replicas”, ensuring that all copies of the database
remain identical at any time.

Essentially replication and mirroring share the goal of copying data to
multiple servers, mirroring prioritizes synchronous replication so that data
remains identical and available on any server but also increases network
load. Because of this capability, it is a better way to back up data than asyn-
chronous replication.

CONFIGURATION OF MYSQL REPLICATION

To configure the source or master server to use the binary log file for
replication, we need to enable the binary log and assign the server a unique
ID. In addition, it is necessary to configure the firewall so that the replica can
communicate with the master server, this can be done with the command
sudo ufw allow from 192.168.1.105 to any port 3306. It is important to note
that each server located in the replication topology must have a unique ID
which is a positive integer and is set using the server_id system variable.

The following MySQL command is used to set the server_id variable:
SET GLOBAL server_id = 1; It is also necessary to set the name of the bi-
nary log file. These settings can also be done by changing the configuration
file located at the location /etc/mysql/mysql.conf.d/mysqld.cnf and it is nec-
essary to change the following lines:

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

286

• bind-adress - the source server address is entered, it specifies the
address from which MySQL will allow connections. On this line,
instead of 127.0.0.1, enter 0.0.0.0.

• server-id - as already mentioned uniquely identifies the server.
log_bin - the path to the binary log file as well as the name of the
binary log file.

• binlog_do_db - enter the name of the database that will be repli-
cated. If it is necessary to create replicas of several databases, add
more lines with the names of the databases below this line. You
can also specify the name of the database that will not be replicat-
ed using the binlog_ignore_db directive.

Figure 3 MySQL configuration file on master server

When all the changes have been entered, it is necessary to save the
configuration file and restart the mysql service with the following command
sudo systemctl restart mysql. When the MySQL server is up again, it is pos-
sible to log into MySQL using the command mysql -u root -p if we want to
access MySQL as the root user.

Figure 4 Creating a user on the master server who will access the server for replication

Figure 5 Grant of privileges for replica user

Furthermore, it is necessary to create a database, after creating the
database it is necessary to execute using the command USE test_db; we
choose the base with which we want to work, that is, where the table will be
created and a new row added to the table. After that, it is necessary to cre-
ate a user for replication, that is, a user that replication will use to monitor

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

287

changes on the master server.
The created replica user in this case is used IDENTIFIED WITH

mysql_native_password for user authentication, the default authentication
mechanism would require the use of an encrypted connection between the
source server and the replica. This option should be used in production.

When the user is created, it is necessary to grant him privileges to
work with the database that needs to be replicated. In order to get the posi-
tion of the binary file, i.e. the position for setting the slave server, it is neces-
sary to execute the show master status command and remember the name of
the binary log file as well as the position, after that, the master server setup
process is complete.

When we have made the settings on the master, it is necessary to set
the replica or more if necessary. The first item when setting up the replica
is to change the configuration file, which is located in the same location
as the source server, ie. /etc/mysql/mysql.conf.d/mysqld.cnf, where you need
to change the lines in the file it is important to enter a server-id that is not
the same as that of the master server, as well as to add a new relay-log line
indicating the location and name of the relay log file on the server. Another
important note is that it is necessary to delete the auto.cnf file located at the /
var/lib/mysql/auto.cnf location, the reason for deleting this file is that it serves
to assign the UUID automatically, and since the virtual machine was cloned
from installed MySQL server, an error will occur when starting the slave.
After that, it is necessary to restart the MySQL service and log in to MySQL.

Figure 6 MySQL configuration file for replica

When all that is finished, it is necessary to execute the command that
enables the replication to be connected to the master server, the command
is shown in the picture below. For MASTER_HOST - the IP address of the
master server is entered, MASTER_USER - the user that was created earlier
on the master server, MASTER_PASSWORD - the password that was as-
signed to the user of the replica that was created on the source server, MAS-
TER_LOG_FILE - the log file that the replica will monitor and from which
it downloads changes to database, which is also specified in the MySQL

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

288

configuration file and MASTER_LOG_POS - the position obtained earlier
when the status of the master server was displayed.

Figure 7 Master configuration in replica server

One of the notes is that instead of master and slave names, SOURCE
and REPLICA can be used, so it could also be written as CHANGE REPLI-
CATION SOURCE TO SOURCE_HOST, etc. After executing the previous
command, the command to start the slave server START SLAVE can be ex-
ecuted and then the server status can be checked using the SHOW SLAVE
STATUS command.

From the status, you can see some important information, for exam-
ple, at which IP address is the master server, who is the user on the master
through which we access the master, that the master server works on port
3306, which is the default port for MySQL, you can also see the name of the
binary log file in which mentions are written, as well as the relay log file on
the slave server. In addition, you can see two lines Slave_IO_Running and
Slave_SQL_Running which represent the processes that are created on the
slave server and which were discussed at the beginning that the IO thread
serves to listen for changes in the binary file on the master and transfer
them to the relay binary file on the slave u, while the SQL thread reads the
changes from the relay binary and executes them on the slave server. Errors
that occur can also be seen here. Also SQL_Delay represents the time after
which the slave server will apply the changes that happened on the master,
this was also discussed at the beginning of the work, these are delayed rep-
lications that can be configured also in the mysqld.cnf file.

When all the settings have been completed and it has been verified
that the master and slave servers function without errors, replication testing
can be performed, i.e. whether the changes are mirrored from the master
server to the slave server.

GTID REPLICATION OF MYSQL DATABASE

A Global Transaction Identifier (GTID) is created and associated with
each transaction that is successfully executed on the origin server. It ensures
that every transaction can be easily tracked in the system. An example of set-

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

289

ting up a simple master-slave replication using GTID will be shown below.
Similar to setting up the master server, to use the binary file it is

necessary to modify the configuration file of MySQL (/etc/mysql-mysql.
conf.d/mysqld.cnf). It is necessary to change bind-address = 0.0.0.0, add the
line gtid_mode=ON and enforce-gtid-consistency=ON. Other changes are
shown in the image below.

Figure 8 MySQL configuration file for GTID replication on master server

After the change, restart the MySQL server and add a rule for the fi-
rewall so that the replica can communicate with the base using the following
command sudo ufw allow from any to any port 3306, then open the MySQL
prompt where it is necessary to create a user with privileges to read changes
from the master server same as it was created in example with binary log files.

On the slave server it is also necessary to enable the GTID in the
configuration file as on the master server (it is necessary to change the bind-
address = 0.0.0.0) and it is important to change the server-id so that it is not
the same as on the master server.

Figure 9 MySQL configuraion file for GTID replication on replica/slave server

After restarting the MySQL server, configure the replica in MySQL
to use the master with GTID as the source for creating the replica, as well
as to use the GTID automatic transaction position.

Figure 10 Configuration of master server on replica server

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

290

This configuration entry, when MASTER_LOG_FILE and MAS-
TER_LOG_POS are omitted means that the replica is configured to work
with GTID, which also means enabling auto position. After the configurati-
on, start the slave server with the START SLAVE command; the command
to check the status of the slave server can also be started - SHOW SLAVE
STATUS\G;

COMMANDS FOR WORKGIN WITH MYSQL REPLICATION

After the replicas are created, it is highly likely that knowledge of
some of the commands used to manipulate replications in MySQL will be
needed. Depending on the type of needs and requirements, it is important
to have additional commands that can be used when working with replica-
tions.

Some of the commands have already been shown in the previous chap-
ter when setting up replications, but it is possible to change them whenever
there is a need to change some of the settings, for example the command
CHANGE MASTER TO, which is used to set up the slave server, can be
used later if it is necessary to change some of the parameters.

In addition, the START SLAVE command was also used; which starts
the slave after entering the parameters via the previous command CHANGE
MASTER, in addition to the START command, there is also a STOP SLAVE
command for stopping the slave server, as well as for restarting, i.e. deleting
all configurations on replication, the RESET SLAVE ALL command. These
commands can be used in the case when it is necessary, for example, to up-
grade a slave server to a master, where it is necessary to stop slaves, delete
binary log files and change the configuration.

Some other useful commands that can be used in backup situations
are STOP SLAVE IO_THREAD which stops reading changes from the bi-
nary log file on the master server. This can also be useful when the SQL
thread needs to catch up and apply all the changes that have been read from
the origin server by the IO thread up to that point. In addition, it is also use-
ful when it is necessary to make some changes on the master server as well
as on the replica.

It is also possible to stop the SQL thread with the STOP SLAVE
SQL_THREAD command, which prevents the execution of changes that
the IO thread transferred from the master server to the replica. The fol-
lowing two commands can be used to view the binary files, the first is to
view the binary log file SHOW BINLOG EVENTS IN ‚mysql-bin.000001’;

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

291

which can be executed on the master server. Where you can see the name
of the log file, the position, the type of change that occurred on the server
or in the database, the identification number of the server on which the
change occurred, as well as the end of the change position. Instead of this
command, it is also possible to display the binary file using the command
sudo mysqlbinlog /var/log/mysql/mysql-bin.000001 where you can see the
details of the binary file such as e.g. the time the change was made, one can
also see the thread_id which thread made the change, exec_time the time
the change was made, etc.

On the slave server, it is possible to display changes in the relay log
file also using the mysqlbinlog command, given that these two log files have
the same format, or it is possible to use the SHOW RELAYLOG EVENTS
IN ‚mysql-relay-bin.000002’ command; Another command that can be used
in case replication stops working and it is necessary to recover replication
is the command to skip the changes that happened on the master server and
it can be executed only while the threads on the slave server are stopped,
otherwise a SET error occurs GLOBAL sql_slave_skip_counter=2, which
skips the next 2 changes that occurred on the master server.

 These commands allow administrators to manipulate replicas from
configuring replicas to monitoring replication status and troubleshooting.
Effective use of these commands is critical to maintaining the reliability and
efficiency of replication in MySQL.

GROUP REPLICATION IN MYSQL

MySQL Group Replication is a feature in MySQL that allows mul-
tiple servers to work together, replicating data across nodes to ensure high
availability and fault tolerance. This feature allows a group of MySQL serv-
ers to coordinate and agree on changes that occur in the database, ensuring
that each server has an identical copy of the data. This setup provides bene-
fits such as automatic failover, in case one server fails, another server in the
group can take over to maintain continuity of availability.

The main features of group replication include:
• Transactions are replicated synchronously to maintain data consis-

tency across all members in the group.
• Group replication ensures error detection and recovery, thus ensur-

ing database availability.
• Each server in the group can perform both write and read operations,

which enables load balancing and scalability.

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

292

• New servers can be added or joined to the group dynamically, as
well as member servers can be removed from the group.

Another important thing is how to execute changes in group replica-
tion ie. when a read-write transaction is ready to commit, the origin server
(on which the change was made) broadcasts the changes and their identi-
fiers to all servers in the group. Such broadcasting of changes is atomic,
which means that either all servers allow the changes or reject them (Group
Replication Background).

MySQL batch replication and traditional replication differ in sever-
al key aspects. Traditional replication in MySQL usually involves a mas-
ter-slave configuration where one server or master replicates data to one or
more slave servers. This replication is asynchronous, which means that there
may be a delay in data replication between the master and slave servers. On
the other hand, MySQl group replication involves multiple servers working
together or synchronously to copy data on all nodes simultaneously.

CONCLUSION

Today, database replication is an indispensable component in data-
base architecture, critical to maintaining high availability, scalability and
fault tolerance of the system. MySQL database replication allows data to be
distributed across multiple servers, thus improving read performance and
overall application efficiency, enabling faster access to data from different
locations. Also, database replication offers solutions and strategies for data
recovery in the event of a system failure, thereby significantly reducing
risk of information loss. Thanks to it, systems are able to respond to the
increase in data requirements, optimize load distribution and improve user
experience.

REFERENCES

“Group Replication Background” in MySQL Documentation Available: https://dev.
mysql.com/doc/refman/8.0/en/group-replication-background.html (Accessed:
1.3.2024.)

“Replication” in MySQL Documentation Available: https://dev.mysql.com/doc/refman/8.0/
en/replication.html (Accessed: 27.2.2024.)

Drake, Mark. 2021. “How To Set Up Replication in MySQL” in DigitalOcean. Available:
https://www.digitalocean.com/community/tutorials/how-to-set-up-replication-in-
mysql (Accessed: 25.2.2024.)

Kemme, B. and Alonso, G., “Database replication”, Proceedings of the VLDB Endow-
ment, vol. 3, no. 1-2, p. 5-12, 2010. https://doi.org/10.14778/1920841.1920847

QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL

293

Milani, B. A., & Navimipour, N. J. (2016). A comprehensive review of the data replication
techniques in the cloud environments: Major trends and future directions. Journal
of Network and Computer Applications, 64, 229-238.

Pohanka, T., & Pechanec, V. (2020). Evaluation of replication mechanisms on selected
database systems. ISPRS International Journal of Geo-Information, 9(4), 249.

Šušter, I., & Ranisavljević, T. (2023). Optimization of MySQL database. Journal of process
management and new technologies, 11(1-2), 141-151.

Yadav, S., Singh G., & Yadav D., “Mathematical framework for a novel database replica-
tion algorithm”, International Journal of Modern Education and Computer Sci-
ence, vol. 5, no. 10, p. 1-10, 2013. https://doi.org/10.5815/ijmecs.2013.09.01

Zmaranda, D. R., Moisi, C. I., Győrödi, C. A., Győrödi, R. Ş., & Bandici, L. (2021). An
analysis of the performance and configuration features of MySQL document store
and elasticsearch as an alternative backend in a data replication solution. Applied
Sciences, 11(24), 11590.

Notes on the authors
Ivan ŠUŠTER, B.Sc., is a M.Sc. student at the Faculty of electronic engineering,

University of Niš. E-mail: ivansu995@gmail.com
Darjan KARABAŠEVIĆ, Ph.D. is a Full Professor and Dean of the Faculty of Applied

Management, Economics and Finance, University Business Academy in Novi Sad. E-mail:
darjan.karabasevic@mef.edu.rs

Aleksandar ŠIJAN, M.Sc., is a Ph.D. candidate at the Faculty of electronic engi-
neering, University of Niš and a Teaching Assistant at the Faculty of Applied Management,
Economics and Finance, University Business Academy in Novi Sad. E-mail: aleksandar@
mef.edu.rs

Đorđe PUCAR, M.Sc., is a Ph.D. candidate at the Faculty of Economics and Engi-
neering Management, University Business Academy in Novi Sad and a Teaching Assistant
at the Faculty of Applied Management, Economics and Finance, University Business Acad-
emy in Novi Sad. E-mail: djordje@mef.edu.rs

Luka ILIĆ, M.Sc., is a Ph.D. candidate at the Faculty of electronic engineering, Uni-
versity of Niš and Teaching Assistant at the Faculty of Applied Management, Economics
and Finance, University Business Academy in Novi Sad. E-mail: luka.ilic@mef.edu.rs

Goran JOCIĆ, M.Sc., is a Ph.D. candidate at the Faculty of Economics and Engi-
neering Management, University Business Academy in Novi Sad and a Teaching Assistant
at the Faculty of Applied Management, Economics and Finance, University Business Acad-
emy in Novi Sad. E-mail: goran.jocic@mef.edu.rs

