
QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL 

137 

 
SETTING UP A MODEL FOR STUDYING  

THE BASICS OF PROGRAMMING  

AT UNIVERSITIES USING THE PYTHON 

PROGRAMMING LANGUAGE 

 
Dejan VIDUKA 

Luka ILIC 

Aleksandar ŠIJAN 

 
Abstract: In this paper, we present a simple model that should lead to 

easier mastering of programming among students. The model is based on 

the study of one programming language, which should directly develop 

all the necessary knowledge of students and thus enable easier 

continuation of independent learning and integration into other 

programming languages. Through, we have processed the behavior of the 

Python programming language with algorithms but also with other 

popular programming languages such as Java and C ++. We only looked 

at the problem of programming through procedural and object-oriented 

programming using the Python programming language. The ultimate 

goal of the paper is to offer a new model that provides an effective 

approach to teaching students the basics of programming using a single 

programming language. The application of one programming language 

should lead to easier and deeper mastering of programming knowledge. 

In this paper, we recommend Python as an excellent choice for teaching 

object-oriented programming. Although often viewed as a "scripting" 

language, Python is a completely object-oriented language with a 

consistent object model and a rich set of built-in classes. Based on our 

experiences in teaching and working with students, we propose this 

model as a potential solution for faster and easier development of new 

skills in the field of programming. 

Keywords: basics of programming, Python, programming languages, 

C++i Java 

Introduction 

Computer sciences integrate several different knowledge required in 

the field of data structures, algorithms, numerical analysis, programming 

methodology, simulations, etc. At the universities where experts of this 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL 

138 

profile study, a number of programming languages are often used for 

education, including: C, C ++, C #, Java, PHP and Python. This model of 

programming learning can spend a lot of time constantly learning basic 

syntax instead of using every subject that is currently learning a new 

programming language to deepen and gain new knowledge and experience 

in the field of programming. If you compare this with learning foreign 

languages, which are usually one or two at most universities, then it is clear 

that this can be done with programming languages as well. 

The professional public has accepted the Python programming 

language as a platform for learning programming since primary education 

because it provides a wide range of possibilities. The main advantage of this 

programming language is its simplicity in writing, and therefore in learning. 

Considering that most users have already encountered this programming 

language, then the knowledge acquired in this field can be improved at 

universities without a special need for new learning of syntax. New learning 

of syntax in various programming languages only helps the user to see new 

possibilities but not to raise them to a higher level when learning similar 

things throughout the semester as in other programming languages such as: 

variables, numbers, lists, loops, etc. 

Python, on the other hand, has built-in data types that allow students to 

quickly create functional programs on their own. (Myers & Sethna, 2018) 

Choosing a primary programming language would facilitate students' 

accelerated development, true in only one programming language but 

when one considers that logic, not just syntax knowledge, is primarily 

developed. It is characteristic of every programmer that he constantly 

develops and improves his knowledge on his own, for which he only 

initially needs help to penetrate as easily and deeply as possible into the 

core of the problem. 

Many studies have highlighted the difficulties experienced by 

University students in learning programming. (Grandell et al., 2006) Some 

of these problems are encountered by the authors themselves in their work 

with students at the university and based on this knowledge they propose 

the following model that can facilitate learning and give greater 

competencies to students in further work after graduation. 

About the Python programming language 

Python is a powerful dynamic programming language used in a wide 

range of applications. (Python, 2022) Its high-level data structures and clear 

syntax make it an ideal first programming language (Downey, 2012) or a 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL 

139 

language for easier merging of tools from different domains to solve 

complex problems. (Langtangen, 2006) 

Python has a large number of standard libraries that can speed up the 

development of programs for various applications, which is why it is used 

by large global companies such as Google and Youtube. The programming 

language itself was developed as Open Source Software (OSS) and its 

source code is available to users for free use as well as for commercial use. 

It is also very well documented which makes it easier for users to further 

learn and improve. In addition to all of the above, Python is an interpreted 

programming language and as such allows students to analyze each 

individual command. (Kapanowski, 2010) 

Python in education 

In the last few years, there has been an increase in the use of (Radenski, 

2006) Python in academic circles, which has led to a large number of 

textbooks in this field. (Gaddis, 2009) 

The main culprit for this progress is its clean and simple syntax, which 

allows students to devote more time to learning the concept of program 

development, rather than the syntax itself. 

In the meantime, in addition to educational institutions, Python has gained 

wide application in the industry itself, which separates it from programming 

languages such as: Pascal, Delhi, Visula Basic, which were previously used in 

education. Python programming language is a powerful and object-oriented 

programming (OOP) language, which makes it suitable for the development of 

serious programming solutions, but also for learning object-oriented 

paradigms. Some of the industries in which python is used are: robotics, 

multimedia, science, etc., which also have their use in education. 

Influence of Python programming language on learning OOP paradigm 

Our general reason for using Python is quite similar to those that use 

Python to teach procedural access: it allows for a greater emphasis on basic 

principles with less unwanted focusing on syntax. Our goal is steady 

progress in which each lesson is consistent with previous lessons. More 

effort is needed to make object awareness clear from the outset, rather than 

an unpleasant paradigm shift later in learning. With this we want to be able 

to use the same programming language for learning initial procedural 

programming as object-oriented in a simple and fast way. True, this is very 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL 

140 

difficult to do in 15 weeks, as long as one semester lasts, so it would be 

good to separate these two paradigms, to learn the procedure first, and then 

object-oriented programming in two special subjects. Similar to the case of 

computer graphics, where it is recommended to study vector and raster 

graphics separately. 

The first subject can be called the basics of programming and learn the 

dream elements of programming using the procedural paradigm. Another 

subject can be called Object Oriented Programming and it should deal with 

the object paradigm but using the same programming language in our case 

it is Python. 

Python programming language and algorithms 

Algorithms are one of the most important knowledge that an engineer 

should possess. They are used not only in writing care programs in all cases 

of solving engineering tasks. Precisely because of its use, this discipline is 

studied in all engineering and other fields at universities around the world. 

Algorithms can be studied only by reading the literature and doing sets 

of tasks, this approach is not so popular among students, but the knowledge 

itself is smaller and less applicable. For that reason, it is common to learn 

algorithms with programming, which implements the acquired knowledge 

faster and easier into real projects. 

In practice, there is a large amount of literature that uses algorithms to 

study programming languages such as Java, C ++ and C. It is often argued 

that these are programming languages that are familiar to students from 

work, so it is easier to master new materials. Unfortunately, experience has 

shown that algorithms are rarely studied with programming, but only the 

syntax of programming languages. 

Algorithms themselves have several lines and are very easy to draw, 

while on the other hand in programming languages such as C or C ++ they 

are syntactically defined in many lines and thus difficult to follow. In the 

case of Python, which is very optimal with syntax code, it is easier to define 

in less lines and more complex algorithms, and thus easier to follow and 

learn. This ability makes it suitable and desirable for learning algorithms in 

the educational process. Second, Python provides basic data structures such 

as lists, torques, and dictionaries that algorithms can use directly. Even more 

complex data structures such as trees and graphs can also be expressed in 

Python in a concise, human-readable form, without the need to reinvent 

these data structures. (Chou, 2002) 

 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL 

141 

Comparison of Python with Java and C ++ programming languages 

In practice, programming languages such as Java and C ++ are very 

common in education. They are used from the ground up, advanced 

programming and as a testing ground for mastering the OOP paradigm. All 

that can be learned in education as a material for mastering programming 

can be done with the Python programming language in an easier and faster 

way. What makes the python even more attractive for the basics is that it 

enables transition to other languages due to small differences such as: 

marking block structures, primitive names, use of I / O, etc. 

The different object models of Java and C ++ are new to students 

migrating from Python, while migrating from Python to Java could be 

easier. Python's models for identification, information transfer, and 

symmetry are assigned in accordance with Java's reference model for object 

types. Both languages rely on the collection of surpluses in terms of 

protecting programs from poor memory management. On the other hand, 

the transition from Python to C ++ is much more extreme due to the 

complexity of the C ++ programming language. In addition, the difference 

between static and dynamic memory allocation places more responsibility 

on C ++ programmers. (Goldwasser & Letscher, 2008) 

Model proposal 

This model is very simple and does not require major changes in 

administrative form. For this model, it is necessary to define two subjects, 

and if desired, the third. 

 The first subject would be called Fundamentals of Programming and 

would study the basic building blocks of a programming language. In 

our model, that programming language for all three subjects would be 

Python. This course would be studied in the first semester of the first 

year and in this way students would be introduced to the basics of 

programming and pre-procedural programming. 

 The second subject would be called Object Oriented Programming 

(OOP) and would deal with, as its name suggests, object programming 

also in the Python programming language, which would upgrade the 

acquired knowledge from the first year. This subject would be studied 

in the first semester of the second year or in the second semester of the 

first year, depending on the duration of studies (6 or 8 semesters) 

 The third and recommended subject could be called the Practicum in 

Applied Programming, which would combine the acquired knowledge 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL 

142 

of students from both previously mentioned subjects that they would 

apply in independent (mentoring) work. This course would be studied 

in the second year in the second semester or in the case of a study length 

of 6 semesters this course would be taught in the first semester of the 

second semester. 

This would complete the learning of programming with practical work. 

This model avoids constant learning of new syntax and possibilities of 

various programming languages, but time would be wisely used to acquire 

new and deeper knowledge in programming. 

Discussion 

As you can already see from the paper, Python has many advantages 

for acquiring the basics. Applying this model gives you time to learn and 

better master programming, and not just a great variety of knowledge of 

programming languages. The model takes only the first two years, which 

leaves enough space for the third and possibly the fourth year to then do 

advanced programming in programming languages such as C ++ and Java. 

The third subject is recommended because it achieves greater involvement 

of students in software development, and thus their satisfaction with 

learning. Other models require a lot of work from students to constantly 

master the basics, and it is enough to learn everything in one programming 

language and then only upgrade knowledge from other programming 

languages if and when students need it. Our task in education is to teach 

students to think and encourage the use of their logic in solving certain 

problems, not learning syntax and solving math problems as standard 

batteries of tests to test their skills. It often happens that students master 

the material, and when it is necessary to apply it, they do not know how to 

apply that knowledge. Just as mathematicians practice tasks, and chess 

players various chess combinations, so programmers need to work on real 

projects that will make their knowledge more applicable. This approach 

would be more appreciated by the students themselves and by future 

employers. 

Conclusion 

The model based on the previous analysis has a great possibility of 

success if it is accepted by educational institutions. The task is to teach 

students to program and all the time that is available to professors in the 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL 

143 

curriculum should be used for new learning and deepening knowledge. This 

model can be done with other mentioned programming languages, but 

Python has more advantages over other languages, and the learning effects 

are equal or greater when you consider the simplicity of Python. 

Applied courses are rarely done at academic levels, so the third 

proposed course is a great opportunity for students to finally do an 

independent task in a real environment with acquired knowledge, and it is 

certain that during the process they will upgrade their knowledge depending 

on project needs. This achieves exactly what we talked about at the 

beginning of the paper, and that is that students need to learn to learn 

independently and upgrade their knowledge. For independent learning, 

students should use available literature, Internet sources as well as the 

commune gathered around the Python programming language, but also 

exchange knowledge with other students, assistants and professors. From 

the offered model, it is clear that students do not need ten programming 

languages to learn programming, but let's say in our model, one through 

three subjects. This is quite enough to learn programming and to get a job 

in the economy later, which is the ultimate goal of the educational process. 

The application of other programming languages is possible in accordance 

with the study program such as: internet programming, mobile 

programming, etc. These subjects study specific branches of programming 

application, and our model talks about acquiring knowledge about the 

basics of programming regardless of its application. 

LITERATURE 

1. Chou P. H. (2002) Algorithm Education in Python, Proceedings of the Python 10 

Conference, Alexandria, VA. 

2. Downey A. B. (2012) Think Python, An Introduction to Software Design, 

http://www.thinkpython.com/. 

3. Kapanowski A. (2010) Python for education: the exact cover problem, Online source: 

https://arxiv.org/abs/1010.5890v1, (Access 14.03.2022.). 

4. Gaddis T. (2009) Starting Out with Python. Addison-Wesley. 

5. Goldwasser M. H. and Letscher D. (2008) Teaching an Object-Oriented CS1 — with 

Python, ITiCSE’08, Madrid, Spain. 

6. Grandell L., Peltomäki M., Back R. J. and Salakoski T. (2006) Why Complicate 

Things? Introducing Programming in High School Using Python, Academia. 

7. Langtangen H. P. (2006) Python Scripting for Computational Science, Series: Text in 

Computational Science and Engineering, Vol. 3, 2nd Edition, Springer-Verlag 

Berlin Heidelberg. 

8. Myers C. R. and Sethna J. P. (2018) Python for Education: Computational Methods for 

Nonlinear Systems, Online source: https://arxiv.org/abs/0704.3182v1, (Access 

15.03.2022.) 



QUAESTUS MULTIDISCIPLINARY RESEARCH JOURNAL 

144 

9. Python Programming Language, http://www.python.org/. (Access: 03.03.2022.) 

10. Radenski A. (2006) ”Python first”: A lab-based digital introduction to computer 

science. In Proc. 11th Annual Conf. on Innovation and Technology in Computer 

Science (ITiCSE), pages 197–201, Bologna, Italy. 

NOTES ON THE AUTHORS 
Dejan VIDUKA was born in Osijek, Croatia in July 30, 1980. Currently he is a 

Assistant professor of Computer Science Department at the Faculty for Applied 
Management, Economics and Finance, Belgrade, University Business Academy, Novi Sad, 
Serbia. Having 23 years of experience at IT sector (hardware, software, SEO, Internet, e-
business, e-marketing, operating systems, CMS systems and Open Source systems) and 
extensive experience in the development of Open Source projects, and is also a member 
of Elxis Community and provides expert assistance to customers from Croatia and Serbia. 
As an IT expert, he worked on many projects for well-known clients from Serbia and from 
abroad. dejan.viduka@mef.edu.rs. 

Luka ILIĆ was born in 1998 in Bijeljina, Republika Srpska. Since 2014 he has been 
working as freelancer in information technology. Graduated from the Faculty of applied 
management, economics and finance (MEF), department of Information technology. 
Currenlty he is pursuing PhD title at Faculty of Electronic Engineering, University of Nis. 
Works as a teaching assistant at MEF faculty and as a freelancer in web technologies. He 
has an interest in technology, sports and adventure. luka.ilic@mef.edu.rs. 

Aleksandar ŠIJAN was born on November 29th, 1990 in Rijeka. He graduated 
from the ICT College in Belgrade summa cum laude and got the title Engineer of Electrical 
and Computer Engineering – BSc (appl.). After that he graduated from the Faculty of 
Applied Management, Economics and Finance (University of Business Academy Novi Sad) 
and earned the title of Bsc (Hons) in information technology. He completed his master's 
thesis in 2019 at the same University and acquired the title Msc in information 
technology. Currenlty he is pursuing PhD title at Faculty of Electronic Engineering, 
University of Nis. He is a former scholarship holder of the Ministry of Education, Science 
and Technological Development of the Republic of Serbia. He is a member of the DevTeam 
and a Teaching Fellow on the Faculty of Applied Management, Economics and Finance. 
As a freelancer, he has been worked on numerous projects since 2011. In addition to 
English, he understands Norwegian language. aleksandar@mef.edu.rs. 

 

 

 

 

  


